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ABSTRACT

As a part of the central nervous system, the
retina may reflect both physiologic processes
and abnormalities related to diseases of the
brain. Indeed, a concerted effort has been put
forth to understand how Alzheimer’s disease
(AD) pathology may manifest in the retina as a
means to assess the state of the AD brain. The
development and refinement of ophthalmo-
logic techniques for studying the retina in vivo
have produced evidence of retinal degeneration
in AD diagnosed patients. In this review, we will

discuss retinal imaging techniques imple-
mented to study the changes in AD retina as
well as highlight the recent efforts made to
correlate such findings to other clinical hall-
marks of AD to assess the viability of the retina
as a biomarker for AD.
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Key Summary Points

Why carry out this study?

Biomarkers of AD and other
neurodegenerative diseases are greatly
needed to enhance clinical trials design
and recruitment. Presently neuroimaging
and CSF biomarkers are expensive and
invasive to perform and are considered
impractical for large-scale studies. The field
has focused on blood-based biomarkers
and is now currently working on the
identification of proteins in plasma/serum
that may reflect neuropathology in brain.
The retinal presents a readily accessible
tissue for monitoring the brain and could
potentially be used in combination with or
as a substitute for current AD biomarkers.

Our review focused on currently available
data on the retina and AD. We summarize
what has been found to date and discuss
potential problems and benefits that the
data currently generated has yielded.

What was learned from the study?

The human retina may be an important CNS
location to detect Alzheimer’s pathology.

Data on retinal involvement in AD and
neurodegenerative diseases have been
controversial and inconsistent. The
reasons behind this may be technical or
procedural in nature.

Standardization, round-robin studies and
additional scientific meetings are needed to
determine how the retinal can be used to
denote neurodegenerative disease
pathology.

INTRODUCTION

Alzheimer’s disease is a progressive neurode-
generative disease that is characterized by
memory loss and cognitive deficits in elderly
adults, usually [ 65 years of age. Post-mortem

analysis of the brain for amyloid-beta (Ab) pla-
ques and neurofibrillary tangles (NFT) com-
prised of the microtubule protein tau remains
the gold standard for AD diagnosis [1, 2]. There
is sufficient evidence to suggest that abnormal
Ab expression and tau precede cognitive defi-
cits, resulting in the addition of biomarkers to
the AD clinical guidelines set forth by the
National Institute of Aging/Alzheimer Associa-
tion (NIA/AA) [3]. Currently, AD biomarkers are
quantified through positron emission tomog-
raphy (PET) or concentration in cerebral spinal
fluid (CSF). While these biomarkers provide
information regarding Ab plaque load and
neurodegeneration, such tests are invasive and
expensive. Additional biomarkers that are non-
invasive and inexpensive would only serve to
support an early diagnosis of AD.

Cognitive visual changes manifest in
patients in the early stages of AD, including
difficulty reading and finding objects [4, 5],
depth perception, perceiving structure from
motion [4–6], color recognition [4, 7] and
impairment of spatial contrast sensitivity [7, 8].
Previously, these defects were thought to be due
to pathologic changes in the cortex. Analysis of
post-mortem retinal tissue identified retinal
ganglion cell loss and optic nerve head thinning
in AD patients [9, 10]. The retina is thought of
as a ‘‘window to the brain’’ as it stems from the
same embryonic precursor as the central ner-
vous system (CNS) and exhibits similar charac-
teristics to the brain [11, 12]. Changes in
neuronal and vascular structures in the retina as
determined by in vivo clinical measures are
evident in multiple neurologic diseases, high-
lighting the retina as a potential biomarker for
the CNS [13].

Studies in transgenic mice heavily suggest
that the abundant expression of Ab and tau
results in neurodegeneration and visual loss. Ab
accumulates within cell bodies and along the
microvasculature in transgenic mouse models
of AD 10–15 and Octodon degus, a natural
model of sporadic AD [14]. Retinal Ab plaques
appear at 2.5 months of age in APP(SWE)/
PS1(DE9) mice, 2–3 months before plaques form
in the brain [15]. These animal models also
demonstrated a significant reduction in visual
function and visuospatial recognition
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compared with healthy controls [16–18], mir-
roring deficits reported in AD patients. Ab was
shown to exert its neurotoxic effect in the retina
by upregulating the expression of an inflam-
matory cytokine (MCP-1), a microglial (F4/80)
and apoptotic marker in the ganglion cell layer
[19], consequently inducing microglia infiltra-
tion and astrogliosis in the retina [20, 21]. As a
result, retinal ganglion cell dendritic atrophy
precedes cell loss, inner retinal thinning,
reduction of axonal density in the optic nerve
and reduced scotopic threshold response
amplitudes measured through electroretino-
gram [16, 22, 23]. While the studies in mouse
models simulate symptoms observed in AD
patients and suggest a potential mechanism for
the visual alterations observed in humans, it is
unclear if similar processes occur in the human
retina, as disease progression between species
may utilize different pathways and therefore
bias results.

This review will discuss the multiple retinal
imaging methods used to evaluate the human
retina in AD patients. We will discuss significant
findings as well as outstanding issues with the
currently used retinal imaging techniques. Also,
we will reflect on how alterations of the retina
corroborate with other biomarkers of AD, such
as protein load in the brain as well as CSF. This
article is based on previously conducted studies
and does not contain any studies with human
participants or animals performed by any of the
authors.

METHODS

We performed a literature search in PubMed
and Web of Science for studies published before
June 2019. Keywords included ‘‘Alzheimer’s
disease,’’ ‘‘retina’’ and ‘‘imaging.’’ A total of 112
articles were identified. Studies in our review
investigated changes in the retina between
Alzheimer’s disease diagnosed patients and
healthy controls, through the retinal thickness,
vascular alterations or in vivo inclusion detec-
tion. Studies conducted in mice as well as
repeats were discarded. The identification of
subsequent articles occurred throughout the
literature review process. Our review discusses

previously conducted studies and does not
contain any studies with human participants or
animals performed by any of the authors.

RETINAL THICKNESS

Numerous studies into AD-mediated retinal
changes evaluated the thinning of the retinal
nerve fiber layer, as histopathologic analysis of
postmortem ocular tissue from AD patients
identified optic nerve degeneration and retinal
ganglion cell (RGC) loss compared with con-
trols [9, 10]. Non-invasive retinal imaging
technology such as optical coherence tomogra-
phy (OCT) uses low-coherence interferometry
to produce high-resolution cross-sectional scans
of the retinal architecture [24]. While other
ocular techniques reported similar findings
[25–28], OCT produced data with higher diag-
nostic value compared with semiquantitative
methods such as red-free photography [29], and
the reliability and reproducibility of OCT retinal
scans have been assessed in normal and cogni-
tively impaired individuals [30, 31]. Thinning of
the peripapillary retinal nerve fiber layer
(pRNFL), the retinal layer around the optic
nerve head, is associated with other retino-
pathies and neurodegenerative diseases [32].
The pRNFL around the optic head is segmented
into four quadrants: superior, inferior, nasal and
temporal. Previous meta-analyses have con-
cluded that retinal thinning, particularly
around the pRNFL, may be a reliable indicator
of neurodegeneration in AD patients [33–37].
Thinning of the pRNFL was apparent in the
inferior [38–48] or superior peripapillary quad-
rant in AD patient retinas [26, 40–43, 45–56].
Meta-analysis of studies performed on patients
diagnosed with mild cognitive impairment
(MCI) suggest retinal thinning may also occur
but to a lesser extent than in AD-diagnosed
patients [33, 35, 36]. Kesler and colleagues
found significant inferior quadrant pRNFL
thinning in MCI-diagnosed patients, while the
superior and inferior quadrants were thinner in
AD patients, suggesting a potential retinal
diagnostic index to differentiate between MCI
and AD [44]. However, subsequent studies in
MCI patients report thinning in the temporal
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[46] and nasal quadrant [53]. Thinning of the
pRNFL may be an indication of cognitive
impairment associated with AD, yet signs
indicative of early disease progression remains
inconclusive.

The macula may also be a potential AD bio-
marker because of the high density of RGCs
around the fovea [57]. Histopathologic studies
quantified as much as 25% RGC loss within the
macula in post-mortem AD retinal tissue [58].
Retinal cells are organized in layers within the
retina to optimize the processing of visual
stimuli, with RGCs contained within the gan-
glion cell-inner plexiform layer (GC-IPL).
Recent OCT studies indicate that the macular
GC-IPL is reduced in AD patients compared
with age-matched controls [33, 43, 53, 59, 60].
These data support the observation of fewer
RGCs in the AD retina, further implicating
retinal neurodegeneration in AD. As seen in the
pRNFL, decreased macular retinal thickness is
less prevalent in MCI patients. Further assess-
ment of macular thickness may provide addi-
tional insight into RGC degeneration in AD.

While evidence for the association of pRNFL
thinning and late stage AD is prevalent, recent
studies contradict previous findings when
assessing retinal thickness in the earlier stages of
AD progression [61–66]. A majority of these
studies were performed on a spectral-domain
OCT (SD-OCT) machine, a newer generation of
OCT technology that improved scan time and
resolution over the previous time-domain OCT
(TD-OCT) machines [67]. As noted by den Haan
and colleagues in 2017, there are discrepancies
between previous generations of OCT, as studies
using TD-OCT machines reported greater dif-
ferences in pRNFL thickness between AD and
healthy controls [35]. While OCT studies high-
light changes observed in AD patients, similar
degeneration occurs in other retinopathies.
Current imaging modalities cannot distinguish
retinal changes caused by glaucoma or demen-
tia, as a recent study using SD-OCT failed to
report significant differences in pRNFL thinning
between AD and preperimetric glaucoma
patients [68]. Although SD-OCT improved res-
olution may eventually identify features unique
to AD, a diagnosis using OCT alone is not
sufficient.

RETINAL VASCULAR CHANGES
IN AD

Vascular diseases are a risk factor of dementia,
and evidence suggests AD pathophysiology
includes a vascular component [69, 70]. For
example, abnormally reduced cranial blood
flow is observed in AD patients through tran-
scranial Doppler analysis [71]. Disruptions in
the cerebral vasculature, such as infarcts and
hemorrhages, are also documented in AD post-
mortem tissue [69]. The brain and retina share
anatomical and physiologic similarities, and
alterations in the retinal microvasculature may
emulate changes in the brain [72]. Disruptions
of the retinal vasculature are reported in cog-
nitively impaired individuals [72]. Abnormal
retinal blood flow has also been measured in
AD, implicating the retinal vasculature as
another potential AD retinal biomarker [50].
While other techniques exist, two primary
ocular imaging modalities used to study AD-re-
lated vascular structural changes are retinal
fundus imaging and OCT angiography (OCTA).

Retinal fundus imaging is a standardized tech-
nique that allows for the quick assessment of the
retinal vasculature [73]. Semiautomated analysis of
retinal photographs provides quantification of
prominent vasculature changes associated with
blood pressure such as inner vessel width (caliber),
tortuosity and global branch patterning (fractal
dimension) [74]. Retinal vasculature assessment
from two population-based cohorts identified
changes in vessel caliber were associated with
dementia in hypertensive individuals [75] and
individuals diagnosed vascular dementia but not
AD [76]. Various alterations in the retinal vascula-
ture were observed in individuals diagnosed with
AD compared with control [77]. However, an
independent study reported significant differences
in retinal fraction in individuals diagnosed with
vascular impairment but not early stage AD [78].
The APOE e4 allele is associated with small vessel
disease and a genetic risk factor for AD [79, 80].
Vessel structure and composition measured
through retinal vessel central reflex were signifi-
cantly associated with APOE e4 status [77]. The
association between vessel central reflex and AD
was not significant whenAPOE e4 status was taken
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into account. Collectively, these data suggest that
vascular retinal measurements could be a reliable
indication of vascular infarctions often comorbid
with AD. Meta-analysis of retinal fundus imaging
studies concluded retinal fractal dimensions were
consistently altered in AD patients, suggesting
measuring vascular complexity may be a viable
biomarker when using retinal fundus imaging
[81–83].

The retinal vasculature is organized into
distinct networks within the retinal layers, and
each vascular network comprises a unique set of
microvessels [84]. As cerebral microvasculature
distortions in AD brains lead to disrupted blood
flow, the retinal microvasculature may reflect
similar malformations. Retinal fundus imaging
lacks the resolution to discern between the
superficial and deep capillary networks [85].
Advances in OCT technology have allowed for
the detailed analysis of the retinal vascular
networks through OCTA [86]. The movement of
objects, such as red blood cell flow, creates
variations in the OCT signal, making it an ideal
contrast agent for vascular imaging. Repeated
scans are analyzed in OCTA to subtract regions
of static OCT signal and highlight regions of
varying OCT signal, producing an in-depth
visualization of the retinal microvasculature.

Several groups demonstrated retinal vessel
density reduction of the superficial capillary plexus
(SCP), the vascular network within the GC-IPL, in
AD-diagnosed patients [87–91]. Jiang and col-
leagues noted a marginal decrease in GC-IPL
thickness in AD compared with MCI and healthy
controls [88]. Reduced GC-IPL thickness was cor-
related with the deep capillary plexus (DCP), a
vascularnetwork located inthe inner retinamainly
composed of capillaries [88]. Because capillary
dysfunction is associated with AD-mediated neu-
rodegeneration, it is possible that the DCP dys-
function is highly susceptible in the AD retina and
may indicate disease progression [92]. Retinal
microvessel density of the DCP was also signifi-
cantly lower inADandMCIpatients fromthesame
study [88]. However, subsequent OCTA analyses
did not observe DCP vessel density reduction in
MCI [91, 93] or AD [87, 93]. Additional analysis of
the SCP and DCP through OCTA may provide
more information about the specific vascular net-
works altered in AD and MCI.

The fovea avascular zone (FAZ) is a specialized
region of the fovea that lacks retinal blood vessels
in order to reduce light scattering [94]. The FAZ
can indicate disease progression, as the width and
circumference of the FAZ correlate with capillary
nonperfusion [95]. A few studies utilizing OCTA
observed larger FAZ in AD [89, 90]. While
increased areas of FAZ were reported in one study
that had screened their population with AD
biomarkers [96], other groups failed to observe
similar changes in their preclinical AD cohort
[91, 97]. One possible explanation for the positive
result could be the variation in AD biomarkers
used to identify experimental subjects. An alter-
native explanation may be that increased FAZ
may be indicative of later stages of AD.

As oxygen metabolism is likely perturbed in
AD [98], another possible retinal vascular mea-
surement is oxygen consumption using retinal
oximetry [99]. Hemoglobin saturated with
oxygen is sensitive to wavelengths at 600 nm
but not 570 nm. Optical densities are calculated
in the retinal vessels to measure relative vessel
oxygenation [100]. The first study to analyze AD
retinas with retinal oximetry detected elevated
venous oxygen saturation in AD patients com-
pared with control individuals, suggesting that
less oxygen is leaving the blood [101]. Similar
results were observed in patients diagnosed with
MCI, hinting that faulty oxygen metabolism
occurs early on in AD [102]. Decreased venous
blood flow was also seen in MCI patients as well
as AD patients, possibly contributing to the
disruption of retinal oxygen consumption
[50, 90]. In summary, these results suggest that
the retinal vasculature is impaired in such a way
to ultimately reduce blood flow. One vascular
measure may not suffice as a definitive sign of
AD; however, quantifying a few key measures
such as oxygen saturation and retinal vessel
density may contribute to developing a distinct
profile of AD progression in the retina.

DETECTING AD PATHOLOGY
IN THE RETINA

Retinal neural fiber layer degeneration and
retinal vasculature configuration are also char-
acteristic of other retinopathies independent of
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AD [103–105]. The possibility of detecting the
classic AD hallmarks such as fibrillar Ab plaques
or NFTs in the retina alongside other retinal
changes could further support an AD diagnosis.
However, Ab and tau are also implicated in
other age-related retinopathies. Inclusions that
resemble the extracellular inclusions called
drusen associated with early stage age-related
macular degeneration (AMD) [106] were detec-
ted in the retinal periphery of AD patients
through ultra-widefield fundus imaging [107].
Several studies report the presence of Ab within
the retinal pigmented epithelium (RPE) cells
and drusen in AMD patients [108–110]. Reduc-
tion of the outer retina such as the photore-
ceptor layer is associated with early AMD
progression [111–113]. One study failed to
detect differences in any of the outer retinal
layers among MCI, AD and healthy controls,
implying that photoreceptor layer thinning is
unique to early AMD [114]. Loss of RGCs is
observed in both glaucoma and AD, implying a
relationship between the two diseases [115]. In
animal models of glaucoma, apoptosis of RGCs
is associated with increased production of
amyloid [116], and inhibiting aggregation may
prevent RGC loss [117]. Tau-mediated patho-
genic mechanisms may be involved in retinal
degeneration, as suggested by decreased tau
levels in the retina [118] and increased levels of
tau in the vitreous body of patients with glau-
coma and diabetic retinopathy [119]. Elevated
intraocular pressure (IOP) present in glaucoma
may play a role in tau phosphorylation [118].
However, no differences in IOP were detected in
AD patients compared with controls [51, 120]. It
is possible that although Ab and tau may be
present in glaucoma and AMD, key differences
may be sufficient to distinguish the different
forms of retinopathy from AD.

The work from the Koronyo-Hamaoui labo-
ratory has provided evidence for detecting reti-
nal Ab detection in vivo. A pilot study
administering curcumin, a turmeric-derived
fluorophore known to bind to Ab plaques [121],
to AD and AMD patients reported abundant
curcumin-positive objects in the peripheral
retina of AD and AMD patients [15]. Histologic
analysis of postmortem retinas performed by
the same group detected Ab-positive inclusions

using curcumin and a panel of Ab-specific
antibodies in AD diagnosed patients compared
with controls [15, 52, 122]. Of note, they
showed that Ab-positive inclusions were more
frequently found in the periphery of the supe-
rior quadrant and were uncommon in the
macula. Diverse Ab deposits often associated
with blood vessels were found predominantly in
the ganglion cell layer [122]. In contrast, other
groups have been unsuccessful in detecting
retinal Ab deposition in AD patients. Williams
et al. were unable to detect any Ab, tau inclu-
sion or deposits in the retinas of 17 AD-related
cases [123]. Schön and collaborators did not
find fibrillary accumulations of Ab in six post-
mortem AD retinas [124]. Similarly, Ho et al.
examined eyes from 11 AD cases and 6 age-
matched controls and did not observe amyloid
deposits in the lens, retina or other ocular
structures in AD eyes [125]. Hinton and col-
leagues also failed to find amyloid in the retinas
of four AD patients [126], and Leger et al. did
not find intraretinal amyloid in eyes of older
patients or two AD patients [127]. Lastly, Jiang
et al. completed a meta-analysis of five of the
aforementioned studies and found significant
statistical heterogeneity between their results,
which was thought to be due to the fact that the
first study by Koronyo-Hamaoui and coworkers
used five antibody clones in contrast to the
other four studies, which used only one clone
[128]. The authors concluded that this meta-
analysis did not provide sufficient evidence to
suggest whether pathologic accumulation of
retinal Ab could be used as a diagnostic tool for
AD. The inability to reproduce Ab human reti-
nal staining can be attributed to technical
inconsistencies such as the tissue preparation or
immunohistochemical protocol [129]. Our lab-
oratory has performed immunohistochemical
analysis on post-mortem AD and control retinal
tissue and observed diffuse Ab staining. While
promising, we would like to refine our tech-
nique. More importantly, the variation in Ab
staining as well as the other retinal markers
discussed above may lie in the heterogeneity of
the sample population.

Detection of retinal tau is promising as it is
known to play a pivotal role in retinopathy
progression by interacting with axonal
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transport signaling pathways and bridging var-
ious signaling protein complexes [130]. AT8-
positive detecting phosphorylated tau inclu-
sions were observed in post-mortem retinal tis-
sue from six AD cases as well as retinal tissue
from two progressive severe palsy cases [124].
Using several antibodies to characterize the
presence of Ab and tau in post-mortem brain
and retina, den Haan and colleagues detected
phosphorylated tau in the inner and outer
plexiform layers of retinal tissues from AD cases
and Ab signal in both AD and control cases
[131]. Additionally, phosphorylated tau but not
Ab staining was present in both brain and reti-
nal tissue of AD cases. Two cognitively normal
cases also exhibited retinal phosphorylated tau
staining. To summarize, retinal tau may indi-
cate tauopathy in the brain, but interpretations
may also be complicated by retinal diseases such
as glaucoma.

Fluorescent live imaging ophthalmoscopy
(FLIO) is an emerging technology that mea-
sures the autofluorescence of the retinal fluo-
rophores, calculating the overall fluorescent
lifetime of a fluorophore. The fluorescent life-
time, or the time elapsed from peak excitation
of the fluorophore to ground state, can be used
to detect abnormalities in the retina. A couple
of FLIO studies observed a significant correla-
tion between AD diagnosis as well as AD CSF
biomarker concentrations with fluorescence
lifetime [132, 133]. Fluorescence lifetime mea-
surements also correlated with GC-IPL thick-
ness measured through OCT as well as with Ab
and tau CSF levels [132]. While additional
studies are needed to further validate these
finding, the use of FLIO in AD retinal diagnosis
is promising.

USING RETINAL ALTERATIONS
IN CONJUNCTION
WITH ESTABLISHED AD
BIOMARKERS

Age is a risk factor of AD and other retinopathies
that may confound the use of the retina as a
biomarker for AD. The retinal nerve fiber layer
naturally decreases with age at a rate of 0.44 lm

per year [134]. A thinner GC-IPL and retinal
nerve fiber layer was detected in individuals C

50 years [135–137]. Retinal layer thickening is
observed in the outer retina of older individuals,
possibly because of decreased activity of the RPE
[135, 138, 139]. While studies include an age-
matched healthy control group to account for
these issues, it is difficult to conclude with high
confidence whether changes in the retina are
inflicted by AD pathology or a result of the
normal aging process. Longitudinal studies
would provide information about retinal thick-
ness and disease progression over time to
account for these potential cofounders.

Early longitudinal studies have focused on
assessing retinal thickness in elderly cohorts to
assess the relationship of retinal degeneration
and disease progression. In a 25-month study
following a cohort of nondemented elderly
individuals, significant thinning in the inferior
pRNFL quadrant was observed in individuals
whose cognitive abilities had declined [38].
Reduction of the pRNFL was observed after
12 months in patients diagnosed with mild to
moderate AD [41]. Drusen-like inclusions in the
peripheral retina increased over a 2-year period
in clinically diagnosed AD patients, suggesting
the continued development of retinal inclu-
sions may occur late in the disease [107]. Recent
studies have utilized other biomarkers such as
functional imaging and CSF Ab and tau con-
centrations to further understand the relevance
of retinal thinning to AD progression. After
individuals were sorted into preclinical AD or
control groups based on Ab PET imaging, Santos
et al. reported a decrease in retinal layer thick-
ness in the preclinical group as well as an
inverse relationship between retinal layer
thickness and Ab accumulation in the preclini-
cal AD group [140]. In another study, elderly
individuals determined to be cognitively nor-
mal at the beginning of the study were assessed
by magnetic resonance imaging and OCT to
correlate retinal thickness to cingular cortical
thickness. Decreased retinal thickness in the
inferior peripapillary quadrant was associated
with cortical atrophy as well as episodic mem-
ory 12 months after initial examination [39]. In
summary, longitudinal studies have provided

Neurol Ther (2019) 8 (Suppl 2):S57–S72 S63



support for using the retina as a feasible bio-
marker for the early diagnosis of AD.

However, other studies implementing Ab
PET [97], CSF [87] or both AD biomarkers [141]
failed to repeat retinal changes observed in
clinically diagnosed AD populations. Although
alterations in macular vessel density were
observed in the biomarker-positive group,
Lahme and colleagues concluded that they were
not due to AD pathology, but vascular diseases
comorbid with AD [87]. In a comprehensive
study using multiple ophthalmologic tech-
niques to quantify various retinal vasculature
parameters, no significant vascular changes
were reported between AD biomarker-positive
and -negative groups [141]. A similar study
conducted between Ab-positive patients con-
verted to AD and Ab-negative patients diag-
nosed with vascular cortical impairment found
a reduced fractal dimension in the Ab-negative
group diagnosed with vascular impairment [78].
Furthermore, retinal thinning and parietal cor-
tical atrophy were observed in both Ab-positive
and -negative individuals, leading the authors
to conclude thinning of the retina correlates
with the parietal lobe independent of the pres-
ence of Ab [60]. These observations suggest that
the alterations in the retina are not directly due
to Ab accumulation but through other mecha-
nisms that are comorbid with AD.

Prognostic studies using AD biomarkers have
provided new insight into retinal changes in the
preclinical stages of AD. Asymptomatic indi-
viduals with high levels of Ab-PET signal exhibit
higher retinal vessel densities as well as larger
vascular widths [97, 142], suggesting higher
blood flow in the retina with Ab accumulation.
Increased retinal blood flow can be induced by
hypoxia, increasing the vascular density
observed in OCTA [143]. A recent study tracking
retinal vessel dynamics identified vasculature
impairment in MCI-diagnosed patients. Further
analysis correlated arteriole dilation with CSF
Ab levels, with the authors proposing Ab levels
in brain and retina may impede retinal vascular
function [93]. Taken together, these results
support the hypothesis that inflammation
instigated by Ab accumulation induces the
retina to go into a hypoxic state similar to the
brain [144]. Activated microglia were detected

in the retinas of pre-symptomatic triple-trans-
genic mice, implicating that Ab plaques and
NFTs can induce gliosis in the retina [145]. In a
case-controlled cross-sectional study, retinal
thickening was revealed in MCI patients
through multivariate regression analysis [66].
The authors speculate that retinal thickness
temporarily increases as an inflammatory
response in the early stages of AD [66, 146]. The
dynamic state of the retina due to gliosis may
partially explain the varied results previously
reported in the prodromal population.

Larger prospective longitudinal studies may
provide a more comprehensive assessment of
the utility of ocular markers to diagnose AD.
Retinal imaging studies can be added on to
existing larger studies. One such example of this
is the A4/LEARN clinical trial, an ongoing study
that has enrolled over 1500 asymptomatic
individuals screened through PET for elevated
Ab levels. Added onto the study is a retinal
imaging component that has two objectives: (1)
determine the incidence of Ab accumulation in
retina relative to brain AD pathology and (2)
correlate retinal Ab and Ab brain PET to cogni-
tive measures across both arms. All participants
in the retinal imaging add on are administered
curcumin and scanned by fundus camera for
curcumin-positive inclusions. After the com-
pletion of the double-blind portion of the
study, participants of the A4 trial will be offered
the opportunity to continue treatment on the
open-label extension. The open-label extension
will provide valuable information with regard
to delayed start analysis. Amendments to stud-
ies such as the one described above will provide
further data to determine if the retina is a reli-
able biomarker for early AD diagnosis.

CONCLUSION

The retina may serve as a ‘‘window into the
brain’’ that may potentially provide a non-in-
vasive and simple method to diagnose AD.
Studies have highlighted distinct changes in the
ocular and vascular structure in AD patients as
well as uncovered distinct retinal changes in
early stages of AD indicative of inflammation.
However, several inconsistencies are reported
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questioning the utility of the retina as a reliable
biomarker for diagnosing AD. While small
sample sizes may be influencing results, another
concern is the variation in techniques used to
measure the retina. Although technology may
provide higher resolution and ease of data
acquisition, one also needs to remember that
such techniques should be reproducible and
also scalable to previous iterations. Further-
more, other factors such as retinopathy and
aging similarly alter the retina, confounding the
retinal alterations possibly due to AD. Future
studies should consider measuring the retinal
vasculature, retinal fiber layer as well as poten-
tial Ab retinal inclusions to compare disease
progression, ideally in individuals pre-screened
through other biomarkers.
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